Rigorous Restricted Isometry Property of Low-Dimensional Subspaces

نویسندگان

  • Gen Li
  • Qinghua Liu
  • Yuantao Gu
چکیده

Dimensionality reduction is in demand to reduce the complexity of solving largescale problems with data lying in latent low-dimensional structures in machine learning and computer version. Motivated by such need, in this work we study the Restricted Isometry Property (RIP) of Gaussian random projections for low-dimensional subspaces in R , and rigorously prove that the projection Frobenius norm distance between any two subspaces spanned by the projected data in R (n < N) remain almost the same as the distance between the original subspaces with probability no less than 1− e. Previously the well-known Johnson-Lindenstrauss (JL) Lemma and RIP for sparse vectors have been the foundation of sparse signal processing including Compressed Sensing. As an analogy to JL Lemma and RIP for sparse vectors, this work allows the use of random projections to reduce the ambient dimension with the theoretical guarantee that the distance between subspaces after compression is well preserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 1 10 6 . 11 51 v 1 [ m at h . ST ] 6 J un 2 01 1 Reconstruction from anisotropic random measurements ∗

Random matrices are widely used in sparse recovery problems, and the relevant properties of matrices with i.i.d. entries are well understood. The current paper discusses the recently introduced Restricted Eigenvalue (RE) condition, which is among the most general assumptions on the matrix, guaranteeing recovery. We prove a reduction principle showing that the RE condition can be guaranteed by c...

متن کامل

Dimensionality reduction with subgaussian matrices: a unified theory

We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson-Lindenstrauss type results obtained earlier for specific data sets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, ...

متن کامل

Generalized Null Space and Restricted Isometry Properties

We propose a theoretical study of the conditions guaranteeing that a decoder will obtain an optimal signal recovery from an underdetermined set of linear measurements. This special type of performance guarantee is termed instance optimality and is typically related with certain properties of the dimensionality-reducing matrix M. Our work extends traditional results in sparse recovery, where ins...

متن کامل

A Generalized Restricted Isometry Property

Compressive Sampling (CS) describes a method for reconstructing high-dimensional sparse signals from a small number of linear measurements. Fundamental to the success of CS is the existence of special measurement matrices which satisfy the so-called Restricted Isometry Property (RIP). In essence, a matrix satisfying RIP is such that the lengths of all sufficiently sparse vectors are approximate...

متن کامل

Subspace Detection from Structured Union of Subspaces via Linear Sampling

Lower dimensional signal representation schemes frequently assume that the signal of interest lies in a single vector space. In the context of the recently developed theory of compressive sensing (CS), it is often assumed that the signal of interest is sparse in an orthonormal basis. However, in many practical applications, this requirement may be too restrictive. A generalization of the standa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.10058  شماره 

صفحات  -

تاریخ انتشار 2018